Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Commun ; 12(1): 1891, 2021 03 25.
Article in English | MEDLINE | ID: covidwho-1387333

ABSTRACT

Monoclonal antibodies (mAbs) and remdesivir, a small-molecule antiviral, are promising monotherapies for many viruses, including members of the genera Marburgvirus and Ebolavirus (family Filoviridae), and more recently, SARS-CoV-2. One of the major challenges of acute viral infections is the treatment of advanced disease. Thus, extending the window of therapeutic intervention is critical. Here, we explore the benefit of combination therapy with a mAb and remdesivir in a non-human primate model of Marburg virus (MARV) disease. While rhesus monkeys are protected against lethal infection when treatment with either a human mAb (MR186-YTE; 100%), or remdesivir (80%), is initiated 5 days post-inoculation (dpi) with MARV, no animals survive when either treatment is initiated alone beginning 6 dpi. However, by combining MR186-YTE with remdesivir beginning 6 dpi, significant protection (80%) is achieved, thereby extending the therapeutic window. These results suggest value in exploring combination therapy in patients presenting with advanced filovirus disease.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Marburg Virus Disease/drug therapy , Marburgvirus/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , Disease Models, Animal , Drug Therapy, Combination , Macaca mulatta , Marburg Virus Disease/prevention & control , Viral Load/drug effects
2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: covidwho-1127220

ABSTRACT

The COVID-19 pandemic has reemphasized the need to identify safe and scalable therapeutics to slow or reverse symptoms of disease caused by newly emerging and reemerging viral pathogens. Recent clinical successes of monoclonal antibodies (mAbs) in therapy for viral infections demonstrate that mAbs offer a solution for these emerging biothreats. We have explored this with respect to Junin virus (JUNV), an arenavirus classified as a category A high-priority agent and the causative agent of Argentine hemorrhagic fever (AHF). There are currently no Food and Drug Administration-approved drugs available for preventing or treating AHF, although immune plasma from convalescent patients is used routinely to treat active infections. However, immune plasma is severely limited in quantity, highly variable in quality, and poses significant safety risks including the transmission of transfusion-borne diseases. mAbs offer a highly specific and consistently potent alternative to immune plasma that can be manufactured at large scale. We previously described a chimeric mAb, cJ199, that provided protection in a guinea pig model of AHF. To adapt this mAb to a format more suitable for clinical use, we humanized the mAb (hu199) and evaluated it in a cynomolgus monkey model of AHF with two JUNV isolates, Romero and Espindola. While untreated control animals experienced 100% lethality, all animals treated with hu199 at 6 d postinoculation (dpi) survived, and 50% of animals treated at 8 dpi survived. mAbs like hu199 may offer a safer, scalable, and more reproducible alternative to immune plasma for rare viral diseases that have epidemic potential.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Viral/pharmacology , Hemorrhagic Fever, American/prevention & control , Junin virus/metabolism , Animals , Disease Models, Animal , Female , Guinea Pigs , Hemorrhagic Fever, American/blood , Humans , Macaca fascicularis
SELECTION OF CITATIONS
SEARCH DETAIL